Brachial artery blood flow dynamics during sinusoidal leg cycling exercise in humans

نویسندگان

  • Yoshiyuki Fukuba
  • Masako Y Endo
  • Ayaka Kondo
  • Yuka Kikugawa
  • Kohei Miura
  • Hideaki Kashima
  • Masaki Fujimoto
  • Naoyuki Hayashi
  • Yoshiyuki Fukuoka
  • Shunsaku Koga
چکیده

To explore the control of the peripheral circulation of a nonworking upper limb during leg cycling exercise, blood flow (BF) dynamics in the brachial artery (BA) were determined using a sinusoidal work rate (WR) exercise. Ten healthy subjects performed upright leg cycling exercise at a constant WR for 30 min, followed by 16 min of sinusoidal WR consisting of 4-min periods of WR fluctuating between a minimum output of 20 W and a maximum output corresponding to ventilatory threshold (VT). Throughout the protocol, pulmonary gas exchange, heart rate (HR), mean arterial blood pressure (MAP), blood velocity (BV), and cross-sectional area of the BA, forearm skin BF (SBF), and sweating rate (SR) were measured. Each variable was fitted to a sinusoidal model with phase shift (θ) and amplitude (A). Nearly all variables closely fit a sinusoidal model. Variables relating to oxygen transport, such as VO2 and HR, followed the sinusoidal WR pattern with certain delays (θ: VO2; 51.4 ± 4.0°, HR; 41.8 ± 5.4°, mean ± SD). Conversely, BF response in the BA was approximately in antiphase (175.1 ± 28.9°) with a relatively large A, whereas the phase of forearm SBF was dissimilar (65.8 ± 35.9°). Thus, the change of BF through a conduit artery to the nonworking upper limb appears to be the reverse when WR fluctuates during sinusoidal leg exercise, and it appears unlikely that this could be ascribed exclusively to altering the downstream circulation to forearm skin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brachial artery blood flow responses to different modalities of lower limb exercise.

INTRODUCTION/PURPOSE Cycling is associated with a reproducible systolic anterograde and diastolic retrograde flow pattern in the brachial artery (BA) of the inactive upper limb, which results in endothelial nitric oxide (NO) release. The purpose of this study was to examine the impact of different types and intensities of lower limb exercise on the BA flow pattern. METHODS We examined BA bloo...

متن کامل

A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans.

A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response of the muscle is relatively small compared with the onset of leg cycling, where a marked increase in muscle ...

متن کامل

Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia

The purpose of this study was to elucidate the effect of exercise intensity on retrograde blood flow and shear rate (SR) in an inactive limb during exercise under normoxic and hypoxic conditions. The subjects performed two maximal exercise tests on a semi-recumbent cycle ergometer to estimate peak oxygen uptake (V˙O2peak) while breathing normoxic (inspired oxygen fraction [FIO2 = 0.21]) and hyp...

متن کامل

Blood Vessels Impact of Shear Rate Modulation on Vascular Function in Humans

Shear stress is an important stimulus to arterial adaptation in response to exercise and training in humans. We recently observed significant reverse arterial flow and shear during exercise and different antegrade/retrograde patterns of shear and flow in response to different types of exercise. The purpose of this study was to simultaneously examine flow-mediated dilation, a largely NO-mediated...

متن کامل

Increased brachial artery retrograde shear rate at exercise onset is abolished during prolonged cycling: role of thermoregulatory vasodilation.

Acute leg exercise increases brachial artery retrograde shear rate (SR), while chronic exercise improves vasomotor function. These combined observations are perplexing given the proatherogenic impacts of retrograde shear stress on the vascular endothelium and may be the result of brief protocols used to study acute exercise responses. Therefore, we hypothesized that brachial artery retrograde S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017